Samstag, Juni 22, 2024

Creating liberating content

Dariusz Mazur und Worte...

Hierbei handelt es sich um eine Medienerklärung, in der der Richter Berichten zufolge...

Wird es große Einschnitte...

- So etwas liegt nicht auf dem Tisch, niemand redet darüber. Die Position...

Tornados, Hagel und Stürme....

In der Nacht von Freitag auf Samstag kann es in Südpolen zu extremen...

Die Kopernikanische Akademie wird...

Der Minister für Wissenschaft und Hochschulbildung Dariusz Wieczorek hat einen Antrag gestellt, zwei...
StartWissenschaftKompressible instabile Dampfströmungs-...

Kompressible instabile Dampfströmungs- und Wärmetransportanalyse: Eine numerische Studie

Der Strömungsbereich ist in Fig. 2 gezeigt. 1. Zuerst wird die quadratische rechteckige zylindrische Geometrie mathematisch konstruiert, deren Länge 1 m, Breite 4 m beträgt, dann wird ein Quadrat mit einer Länge von 0,15 m an der Position (0,25 m, 0,2 m) gezeichnet. Die Differenz zwischen diesen beiden Zahlen wird gemacht und dann wird die gesamte Region markiert. Im nächsten Schritt werden im Abschnitt Materialeigenschaften die Eigenschaften der Flüssigkeit hinzugefügt. In Abbildung 1 haben die Grenzschichten eine Geschwindigkeit u Null. Die Randbedingung wird als kein Schlupf betrachtet und der Anfangsdruck ist Null. Im Einlauf wird eine Durchflussgeschwindigkeit von 1 m/s vorgegeben und die Auslaufbedingung gewählt. Um die Naiver-Stokes-Gleichungen zu lösen, wird die Strömungsphysik hinzugefügt. Abbildung 1 zeigt die Grenzen des Strömungsbereichs.

Abbildung 1

Der Umriss des Problems.

Die Position des rechteckigen und quadratischen Zylinders ist wie folgt:

Rechteck: Position (0,0) Breite (4 m); Höhe (1 m) und Größe (4,1).

Quadrat: Position (0.25,0.2) Seiten (0.15).

Die Randbedingungen am äußeren Rand sind wie folgt:

Region ‚Domänenstart ‚außerhalb‘ (0,0).

{Spiegelzustand an unterer Grenze}.

natürlich (\(u_{r} )\) = 0, natürlich (\(u_{\theta} ) =\)0, Wert Siez= 0.

Natürlich (p) = 0, Linie nahe Punkt (2.0).

Kein Seitenschlupf (dh Geschwindigkeit = 0) Wert Sier= 0bei dem die \(u_{\theta} = 0\)Siez= 0.

Natürlich (p) = 0 Linie nahe Punkt (2,0,5) Natürlich (Sier)=0natürlich (\(u_{\theta}\)= 0),

Wert (ur) = 0, natürlich(p) = 0. die zu schließende Linie (0,0,5).

Bienet=0; Sier=0, \(u_{\theta} = 0\)Siez=0, S=0.

Biener=0,2, z=0,25, u=-SIEÖn.

Die Widerstands- und Auftriebsbeiwerte sind definiert als:

$$C_{D} = \frac{{2F_{D} }}{{\rho U_{mean}^{2} D}},\quad C_{L} = \frac{{2F_{L} }} {{\rho U_{Mittelwert}^{2} D}}.$$

Die Kontinuitätsgleichung lautet:

$$\frac{\partial p}{{\partial t}} + \nabla .\left( {\rho u} \right) = 0,$$

(1)

Die Wärme- und Impulsgleichung lautet:

$$\rho C_{p} \left( {\frac{\partial T}{{\partial t}} + u.\nabla T} \right) + \nabla .\left( {q + q_{r} } \right) = \alpha_{P} T\left( {\frac{\partial P}{{\partial t}} + u.\nabla P} \right) + \tau .\nabla u + Q$$

(2)

$$\rho \frac{\partial u}{{\partial t}} + \rho \left( {u.\nabla } \right)u = \nabla .\left[ { – pi + k} \right] + V,$$

(3)

$${\text{true }}\;K = u\links[ {\nabla u + \left( {\nabla u} \right)^{T} } \right] – \frac{2}{3}u\left( {\nabla .u} \right)u.$$

(4)

Die Kontinuitäts- und Impulsgleichungen werden auf die folgenden Formen reduziert:

$$\frac{{\partial u_{r} }}{\partial r} + \frac{1}{r}u_{r} + \frac{{\partial u_{z} }}{\partial z} = 0,$$

(5)

$$\frac{{\partial u_{r } }}{\partial t} + u_{r} \frac{{\partial u_{r} }}{\partial r} + u_{z} \frac{{ \partial u_{r} }}{\partial z} – \frac{{u_{\theta }^{2} }}{r} = – \frac{1}{\rho }\frac{\partial P} {{\partial r}} + \frac{4}{3}\vartheta \frac{{\partial^{2} u_{r} }}{{\partial r^{2} }} + \vartheta \left ( {\frac{{\partial^{2} u_{\theta } }}{\partial r\partial z} + \frac{{\partial^{2} u_{r} }}{{\partial z^ {2} }}} \right),$$

(6)

$$\frac{{\partial u_{\theta } }}{\partial t} + u_{r} \frac{{\partial u_{\theta } }}{\partial r} + u_{z} \frac {{\partial u_{\theta } }}{\partial z} + u_{r} u_{\theta } = \vartheta \left[ {\frac{{\partial^{2} u_{\theta } }}{{\partial z^{2} }} + \frac{{u_{\theta } }}{{r^{2} }}} \right] + \vartheta \frac{{\partial^{2} u_{\theta } }}{{\partial z^{2} }},$$

(7)

$$\frac{{\partial u_{z} }}{\partial t} + u_{r} \frac{{\partial u_{z} }}{\partial r} + u_{z} \frac{{ \teilweise u_{z} }}{\teilweise z} = \vartheta \left[ {\frac{{\partial^{2} u_{r} }}{{\partial z^{2} }} + \frac{{\partial^{2} u_{z} }}{\partial r\partial z}} \right] + \frac{4}{3}\vartheta \frac{{\partial^{2} u_{z} }}{{\partial z^{2} }} – \frac{1}{P}\frac{ \partial P}{{\partial z}}.$$

(8)

Die für die Wärmegleichung verwendeten Transformationen sind:

$$\begin{aligned} & \alpha_{p} = – \frac{1}{\rho }\frac{\partial P}{{\partial T}},\;\sigma = – \rho I + \ tau,Q_{p} = \alpha_{p} T\left[ {\frac{\partial P}{{\partial t}} + u.\nabla P} \right],Q_{vd} = \tau .\Updelta u, \\ & q = – d_{m} k\Updelta T,\; d_{m} = 1m^{2} .P_{r} = \frac{K}{{\rho C_{p} }},\;\eta = \frac{{z(\Omega \sin \alpha^ {*} )^{0.5} }}{{V^{0.5} (1 – st\Omega \sin \alpha^{*} )^{0.5} }}, \\ & G = (\Omega \sin \ alpha^{*} )^{ – 1} (1 – st\Omega \sin \alpha^{*}, \\ & T\left( {t,r,z} \right) = T = \left( { T_{\omega } – T_{\infty } } \right)\theta,T_{\omega } – T_{\infty } = \left( {T_{0} – T_{\infty } } \right)\frac {x}{L}(1 – st^{*} )^{ – 2} \\ \end{aligned}$$

(9)

Nach der Transformation erhalten wir,

$$\begin{aligned} & Pr(\theta^{\prime \prime } ) = \nu \left( {\frac{1}{2}\theta^{\prime } \eta + 2\theta s} \right) \\ & \quad – pr\frac{G\nu }{{k_{f} \left( {T_{w} – T_{\infty } } \right)}}\left[ {\left\{ {\frac{{q_{0} }}{{A_{s} \Delta T}}} \right\} – p\left\{ {\frac{{u_{r} }}{r} + \frac{{\partial u_{r} }}{\partial r} + \frac{{\partial u_{\theta } }}{\partial z}} \right\} – \frac{1}{3}\left\{ {\frac{{\partial u_{z} }}{\partial z}\frac{{\partial^{2} u_{\theta } }}{{\partial^{2} z}} – 3\frac{{u_{\theta } }}{r}\frac{{\partial u_{r} }}{\partial z} – \frac{{\partial^{2} u_{r} }}{{\partial^{2} z}}} \right\}} \right] \\ & \quad + pr\frac{1}{{k_{f} \left( {T_{w} – T_{\infty } } \right)}}\frac{1}{{R_{e} } }\links[ {\frac{{\partial^{3} }}{{\partial r^{3} }}\left( {\frac{4}{3}u_{r} + u_{\theta } + u_{z} } \right) + \frac{1}{3}\left( {\frac{{u_{\theta } }}{r}\frac{{\partial^{2} u_{\theta } }}{{\partial^{2} r}} + \frac{{\partial u_{r} }}{\partial z}\frac{{\partial^{2} u_{\theta } }}{{\partial^{2} r}} – \frac{{u_{\theta } }}{r}\frac{{\partial u_{\theta } }}{\partial r}} \right) + \left( {\frac{{u_{\theta } }}{r}} \right)^{2} + \frac{4}{3}\left( {\frac{{u_{r} }}{r}} \right) + \frac{4}{3}\frac{{\partial u_{\theta } }}{\partial z}} \right] \\ \end{aligned}$$

(10)

Continue reading

Dax schließt nach einer glänzenden Woche leicht im Minus – weshalb die 16.300 Punkte entscheidend sind

Düsseldorf Nach einer fulminanten Börsenwoche hat sich die Lage am deutschen Aktienmarkt vorerst beruhigt. Zum Handelsschluss lag der Leitindex Dax 0,2 Prozent tiefer bei 16.105 Punkten. Auf Wochensicht ergibt sich ein Gewinn von mehr als drei Prozent...

Enjoy exclusive access to all of our content

Get an online subscription and you can unlock any article you come across.